UMD Researcher Receives New $1M Vehicle Technology Award

UMD Researcher Receives New $1M Vehicle Technology Award

Bookmark and Share



On July 16, 2020, the U.S. Department of Energy (DOE) announced $139 million in federal funding for 55 projects across the country that will support new and innovative advanced vehicle technologies. Funded through the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE), projects will conduct research in advanced batteries, electrification, and manufacturing in support of DOE’s Energy Storage Grand Challenge. The University of Maryland received $1M for their research: “Rational Electrolyte Design for Li-ion Batteries with Micro-Sized Si Anodes”.  

The vision for the Energy Storage Grand Challenge is to create and sustain global leadership in energy storage utilization and exports, with a secure domestic manufacturing supply chain that does not depend on foreign sources of critical materials. Building on previous joint research efforts with Army Research Laboratory (ARL) partners, Dr. Chunsheng Wang, a professor of Chemical and Biomolecular Engineering at the University of Maryland and Maryland Energy Innovation Institute (MEI2) hopes to expand the capabilities of a recently developed electrolyte that forms a protective layer on silicon which is stable and resists the swelling that occurs in silicon anode particles. The PIs plan to extend the electrochemical stability window to >4.5 V by adding other inorganic salts, and/or partially- or all-fluorinated ether solvents into the electrolyte. The new electrolytes will allow the Si anode to couple with a high energy cathode to provide additional performance and prevent decomposition.

Said Wang, “We have designed the electrolytes to form lithiophobic solid electrolyte interphase (SEI) on micro-sized Silicon (Si). The lithiophbic SEI with weak bonding with Si can accommodate large volume changes of Si without damage, ensuring a long cycle and calendar life.”

“Increasing energy density is also important for numerous Army applications including conformal wearable batteries”, noted Dr. Oleg Borodin, a collaborator from ARL.

Additional news on this research published in Naturehttps://energy.umd.edu/news/story/highperformance-electrolyte-solves-battery-puzzle

July 17, 2020


Prev   Next



Current Headlines

University of Maryland Research Enterprise Ranked Among Top 10 Publics in NSF Higher Education R&D Survey

Groth Wins NSF CAREER Award

UMD Research Sheds Light on Holiday Travel and COVID

Regional Quantum Research Body Adds Industry, Government, Higher Ed Partners

UMD Driskell Center and iSchool Launch New Crowdsourcing Project to Preserve the Work of African American Art Pioneer

Researcher Aims to Teach Teachers About African American Language, and Liberate Student Writers

Raghavan Heads NSF Research on Illicit Drug Trafficking

Winners Selected for University System of Maryland Public Health Challenge

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts

Connect

social iconsFacebookTwitterLinkedInResearch News RSS Feed
Office of Technology Commercialization
2130 Mitchell Building
7999 Regents Dr.
University of Maryland
College Park, MD 20742

Phone: 301-405-3947  |  Fax: 301-314-9502
Email: umdtechtransfer@umd.edu

© Copyright 2013 University of Maryland

Did You Know

UMD's Neutral Buoyancy Research Facility, which simulates weightlessness, is one of only two such facilities in the U.S.