Imagine a cell phone charger that recharges your phone remotely without even knowing where it is; a device that targets and destroys tumors, wherever they are in the body; or a security field that can disable electronics, even a listening device hiding in a prosthetic toe, without knowing where it is. The time-reversal process is less like living the last five minutes over and more like playing a record backwards, explains Matthew Frazier, a postdoctoral research fellow in the university's physics department. When a signal travels through the air, its waveforms scatter before an antenna picks it up. Recording the received signal and transmitting it backwards reverses the scatter and sends it back as a focused beam in space and time. Bouncing Off the Walls?? To study time-reversal, the researchers sent a microwave pulse into an enclosed area where waveforms scattered and bounced around inside, as well as off a nonlinear and a linear port. A transceiver then recorded and time-reversed the frequencies the nonlinear port had altered, then broadcast them back into the space. The nonlinear port picked up the time-reversed signal, but the linear port did not.
December 3, 2012 Prev Next |
UMD Time Reversal Findings May Open Doors to the Future
Connect

Office of Technology Commercialization
2130 Mitchell Building
7999 Regents Dr.
University of Maryland
College Park, MD 20742
2130 Mitchell Building
7999 Regents Dr.
University of Maryland
College Park, MD 20742
Phone: 301-405-3947 | Fax: 301-314-9502
Email: umdtechtransfer@umd.edu
© Copyright 2013 University of Maryland
Did You Know
UMD's Neutral Buoyancy Research Facility, which simulates weightlessness, is one of only two such facilities in the U.S.